home *** CD-ROM | disk | FTP | other *** search
Unknown | 1996-07-19 | 7.5 KB |
open in:
MacOS 8.1
|
Win98
|
DOS
view JSON data
|
view as text
This file was not able to be converted.
This format is not currently supported by dexvert.
Confidence | Program | Detection | Match Type | Support
|
---|
1%
| dexvert
| Eclipse Tutorial (other/eclipseTutorial)
| ext
| Unsupported |
1%
| dexvert
| JuggleKrazy Tutorial (other/juggleKrazyTutorial)
| ext
| Unsupported |
100%
| file
| data
| default
| |
100%
| gt2
| Kopftext: 'TUTOR 06'
| default (weak)
|
|
hex view+--------+-------------------------+-------------------------+--------+--------+
|00000000| 54 55 54 4f 52 20 30 36 | c1 1c 00 00 0c 01 00 00 |TUTOR 06|........|
|00000010| 53 65 63 74 69 6f 6e 20 | 32 2e 33 20 20 41 6e 61 |Section |2.3 Ana|
|00000020| 6c 79 7a 69 6e 67 20 47 | 72 61 70 68 73 20 6f 66 |lyzing G|raphs of|
|00000030| 20 46 75 6e 63 74 69 6f | 6e 73 0d 0a 00 0d 0a 00 | Functio|ns......|
|00000040| 0e 65 32 2d 33 2d 31 0e | 47 75 69 64 65 64 20 45 |.e2-3-1.|Guided E|
|00000050| 78 61 6d 70 6c 65 20 31 | 0f 20 20 46 69 6e 64 69 |xample 1|. Findi|
|00000060| 6e 67 20 74 68 65 20 44 | 6f 6d 61 69 6e 20 61 6e |ng the D|omain an|
|00000070| 64 20 52 61 6e 67 65 20 | 6f 66 20 61 20 46 75 6e |d Range |of a Fun|
|00000080| 63 74 69 6f 6e 0d 0a 00 | 0d 0b 00 0e 65 32 2d 33 |ction...|....e2-3|
|00000090| 2d 32 0e 47 75 69 64 65 | 64 20 45 78 61 6d 70 6c |-2.Guide|d Exampl|
|000000a0| 65 20 32 0f 20 20 56 65 | 72 74 69 63 61 6c 20 4c |e 2. Ve|rtical L|
|000000b0| 69 6e 65 20 54 65 73 74 | 20 66 6f 72 20 46 75 6e |ine Test| for Fun|
|000000c0| 63 74 69 6f 6e 73 0d 0a | 00 0d 0b 00 0e 65 32 2d |ctions..|.....e2-|
|000000d0| 33 2d 33 0e 47 75 69 64 | 65 64 20 45 78 61 6d 70 |3-3.Guid|ed Examp|
|000000e0| 6c 65 20 33 0f 20 20 49 | 6e 63 72 65 61 73 69 6e |le 3. I|ncreasin|
|000000f0| 67 20 61 6e 64 20 44 65 | 63 72 65 61 73 69 6e 67 |g and De|creasing|
|00000100| 20 46 75 6e 63 74 69 6f | 6e 73 0d 0a 00 0d 0b 00 | Functio|ns......|
|00000110| 0e 65 32 2d 33 2d 34 0e | 47 75 69 64 65 64 20 45 |.e2-3-4.|Guided E|
|00000120| 78 61 6d 70 6c 65 20 34 | 0f 20 20 53 6b 65 74 63 |xample 4|. Sketc|
|00000130| 68 69 6e 67 20 74 68 65 | 20 47 72 61 70 68 20 6f |hing the| Graph o|
|00000140| 66 20 61 20 47 72 65 61 | 74 65 73 74 20 49 6e 74 |f a Grea|test Int|
|00000150| 65 67 65 72 20 46 75 6e | 63 74 69 6f 6e 0d 0a 00 |eger Fun|ction...|
|00000160| 0d 0b 00 0e 65 32 2d 33 | 2d 35 0e 47 75 69 64 65 |....e2-3|-5.Guide|
|00000170| 64 20 45 78 61 6d 70 6c | 65 20 35 0f 20 20 45 76 |d Exampl|e 5. Ev|
|00000180| 65 6e 20 61 6e 64 20 4f | 64 64 20 46 75 6e 63 74 |en and O|dd Funct|
|00000190| 69 6f 6e 73 0d 0a 00 0d | 0b 00 0e 69 32 2d 33 2d |ions....|...i2-3-|
|000001a0| 31 0e 49 6e 74 65 67 72 | 61 74 65 64 20 45 78 61 |1.Integr|ated Exa|
|000001b0| 6d 70 6c 65 20 31 0f 20 | 20 53 6b 65 74 63 68 69 |mple 1. | Sketchi|
|000001c0| 6e 67 20 74 68 65 20 47 | 72 61 70 68 20 6f 66 20 |ng the G|raph of |
|000001d0| 61 20 46 75 6e 63 74 69 | 6f 6e 0d 0a 00 0d 0b 00 |a Functi|on......|
|000001e0| 0e 69 32 2d 33 2d 32 0e | 49 6e 74 65 67 72 61 74 |.i2-3-2.|Integrat|
|000001f0| 65 64 20 45 78 61 6d 70 | 6c 65 20 32 0f 20 20 53 |ed Examp|le 2. S|
|00000200| 6b 65 74 63 68 69 6e 67 | 20 74 68 65 20 47 72 61 |ketching| the Gra|
|00000210| 70 68 20 6f 66 20 61 20 | 46 75 6e 63 74 69 6f 6e |ph of a |Function|
|00000220| 0d 0a 00 0d 0b 00 0e 69 | 32 2d 33 2d 33 0e 49 6e |.......i|2-3-3.In|
|00000230| 74 65 67 72 61 74 65 64 | 20 45 78 61 6d 70 6c 65 |tegrated| Example|
|00000240| 20 33 0f 20 20 53 6b 65 | 74 63 68 69 6e 67 20 74 | 3. Ske|tching t|
|00000250| 68 65 20 47 72 61 70 68 | 20 6f 66 20 61 20 46 75 |he Graph| of a Fu|
|00000260| 6e 63 74 69 6f 6e 20 77 | 69 74 68 20 54 68 72 65 |nction w|ith Thre|
|00000270| 65 20 45 71 75 61 74 69 | 6f 6e 73 0d 0a 00 0d 0b |e Equati|ons.....|
|00000280| 00 0e 69 32 2d 33 2d 34 | 0e 49 6e 74 65 67 72 61 |..i2-3-4|.Integra|
|00000290| 74 65 64 20 45 78 61 6d | 70 6c 65 20 34 0f 20 20 |ted Exam|ple 4. |
|000002a0| 53 6b 65 74 63 68 69 6e | 67 20 74 68 65 20 47 72 |Sketchin|g the Gr|
|000002b0| 61 70 68 20 6f 66 20 61 | 20 46 75 6e 63 74 69 6f |aph of a| Functio|
|000002c0| 6e 0d 0a 00 53 65 63 74 | 69 6f 6e 20 32 2e 33 20 |n...Sect|ion 2.3 |
|000002d0| 20 41 6e 61 6c 79 7a 69 | 6e 67 20 47 72 61 70 68 | Analyzi|ng Graph|
|000002e0| 73 20 6f 66 20 46 75 6e | 63 74 69 6f 6e 73 0d 0b |s of Fun|ctions..|
|000002f0| 00 44 65 74 65 72 6d 69 | 6e 65 20 74 68 65 20 64 |.Determi|ne the d|
|00000300| 6f 6d 61 69 6e 20 61 6e | 64 20 72 61 6e 67 65 20 |omain an|d range |
|00000310| 6f 66 20 74 68 65 20 20 | 20 20 20 20 20 20 20 20 |of the | |
|00000320| 14 6b 33 2d 35 2d 31 2e | 6d 14 34 38 14 31 14 34 |.k3-5-1.|m.48.1.4|
|00000330| 30 14 38 14 0d 0a 00 0d | 0b 00 66 75 6e 63 74 69 |0.8.....|..functi|
|00000340| 6f 6e 20 67 69 76 65 6e | 20 62 79 0d 0a 00 20 20 |on given| by... |
|00000350| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000360| 20 20 11 34 67 32 32 32 | 32 32 32 0d 0b 00 20 20 | .4g222|222... |
|00000370| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000380| 20 66 20 20 20 20 20 20 | 11 32 32 0d 0b 00 20 20 | f |.22... |
|00000390| 20 20 20 20 20 20 20 20 | 20 11 33 66 11 31 28 11 | | .3f.1(.|
|000003a0| 33 78 11 31 29 20 3d 20 | 11 34 76 20 11 31 31 36 |3x.1) = |.4v .116|
|000003b0| 20 2d 20 11 33 78 20 20 | 11 31 2e 0d 0a 00 0d 0a | - .3x |.1......|
|000003c0| 00 0d 0a 00 13 12 31 53 | 4f 4c 55 54 49 4f 4e 12 |......1S|OLUTION.|
|000003d0| 30 0d 0a 00 0d 0b 00 46 | 72 6f 6d 20 74 68 65 20 |0......F|rom the |
|000003e0| 67 72 61 70 68 20 6f 66 | 20 74 68 65 20 66 75 6e |graph of| the fun|
|000003f0| 63 74 69 6f 6e 2c 20 77 | 65 20 63 61 6e 20 73 65 |ction, w|e can se|
|00000400| 65 20 74 68 61 74 20 69 | 74 73 20 64 6f 6d 61 69 |e that i|ts domai|
|00000410| 6e 20 69 73 20 74 68 65 | 20 73 65 74 20 6f 66 20 |n is the| set of |
|00000420| 72 65 61 6c 20 0d 0a 00 | 6e 75 6d 62 65 72 73 20 |real ...|numbers |
|00000430| 11 33 78 20 11 31 73 75 | 63 68 20 74 68 61 74 0d |.3x .1su|ch that.|
|00000440| 0a 00 0d 0b 00 20 20 20 | 20 20 20 20 20 20 20 20 |..... | |
|00000450| 20 20 20 20 20 20 2d 34 | 20 11 34 3c 20 11 33 78 | -4| .4< .3x|
|00000460| 20 11 34 3c 20 11 31 34 | 20 2e 20 20 20 20 20 20 | .4< .14| . |
|00000470| 20 20 12 31 11 32 44 6f | 6d 61 69 6e 11 31 12 30 | .1.2Do|main.1.0|
|00000480| 13 0d 0a 00 0d 0b 00 41 | 6c 73 6f 20 66 72 6f 6d |.......A|lso from|
|00000490| 20 74 68 65 20 67 72 61 | 70 68 20 6f 66 20 74 68 | the gra|ph of th|
|000004a0| 65 20 66 75 6e 63 74 69 | 6f 6e 2c 20 77 65 20 63 |e functi|on, we c|
|000004b0| 61 6e 20 73 65 65 20 74 | 68 61 74 20 69 74 73 20 |an see t|hat its |
|000004c0| 72 61 6e 67 65 20 69 73 | 20 74 68 65 20 73 65 74 |range is| the set|
|000004d0| 20 6f 66 0d 0a 00 72 65 | 61 6c 20 6e 75 6d 62 65 | of...re|al numbe|
|000004e0| 72 73 20 11 33 79 20 11 | 31 73 75 63 68 20 74 68 |rs .3y .|1such th|
|000004f0| 61 74 0d 0a 00 0d 0b 00 | 20 20 20 20 20 20 20 20 |at......| |
|00000500| 20 20 20 20 20 20 20 20 | 20 20 30 20 11 34 3c 20 | | 0 .4< |
|00000510| 11 33 79 20 11 34 3c 20 | 11 31 34 20 2e 20 20 20 |.3y .4< |.14 . |
|00000520| 20 20 20 20 20 12 31 11 | 32 52 61 6e 67 65 11 31 | .1.|2Range.1|
|00000530| 12 30 0d 0a 00 53 65 63 | 74 69 6f 6e 20 32 2e 33 |.0...Sec|tion 2.3|
|00000540| 20 20 41 6e 61 6c 79 7a | 69 6e 67 20 47 72 61 70 | Analyz|ing Grap|
|00000550| 68 73 20 6f 66 20 46 75 | 6e 63 74 69 6f 6e 73 0d |hs of Fu|nctions.|
|00000560| 0b 00 55 73 65 20 74 68 | 65 20 76 65 72 74 69 63 |..Use th|e vertic|
|00000570| 61 6c 20 6c 69 6e 65 20 | 74 65 73 74 20 74 6f 20 |al line |test to |
|00000580| 64 65 74 65 72 6d 69 6e | 65 0d 0a 00 20 20 20 20 |determin|e... |
|00000590| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000005a0| 20 20 20 20 20 20 11 32 | 32 0d 0b 00 11 31 77 68 | .2|2....1wh|
|000005b0| 65 74 68 65 72 20 74 68 | 65 20 65 71 75 61 74 69 |ether th|e equati|
|000005c0| 6f 6e 20 11 33 78 20 11 | 31 3d 20 11 33 79 20 20 |on .3x .|1= .3y |
|000005d0| 11 31 2d 20 31 20 72 65 | 70 72 65 73 65 6e 74 73 |.1- 1 re|presents|
|000005e0| 0d 0a 00 0d 0b 00 11 33 | 79 20 11 31 61 73 20 61 |.......3|y .1as a|
|000005f0| 20 66 75 6e 63 74 69 6f | 6e 20 6f 66 20 11 33 78 | functio|n of .3x|
|00000600| 11 31 2e 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.1. | |
|00000610| 20 20 20 20 20 20 20 20 | 20 20 20 20 14 6b 33 2d | | .k3-|
|00000620| 35 2d 32 61 2e 6d 14 34 | 38 14 30 14 34 30 14 38 |5-2a.m.4|8.0.40.8|
|00000630| 14 0d 0a 00 0d 0a 00 0d | 0b 00 13 12 31 53 4f 4c |........|....1SOL|
|00000640| 55 54 49 4f 4e 12 30 0d | 0a 00 0d 0a 00 0d 0b 00 |UTION.0.|........|
|00000650| 54 68 65 20 76 65 72 74 | 69 63 61 6c 20 6c 69 6e |The vert|ical lin|
|00000660| 65 20 67 69 76 65 6e 20 | 62 79 20 11 33 78 20 11 |e given |by .3x .|
|00000670| 31 3d 20 31 20 14 6b 33 | 2d 35 2d 32 62 2e 6d 14 |1= 1 .k3|-5-2b.m.|
|00000680| 34 38 14 30 14 34 30 14 | 38 14 69 6e 74 65 72 73 |48.0.40.|8.inters|
|00000690| 65 63 74 73 20 74 68 65 | 20 67 72 61 70 68 20 61 |ects the| graph a|
|000006a0| 74 20 6d 6f 72 65 20 74 | 68 61 6e 20 6f 6e 65 20 |t more t|han one |
|000006b0| 70 6f 69 6e 74 2e 0d 0a | 00 53 70 65 63 69 66 69 |point...|.Specifi|
|000006c0| 63 61 6c 6c 79 2c 20 69 | 74 20 63 72 6f 73 73 65 |cally, i|t crosse|
|000006d0| 73 20 74 68 65 20 67 72 | 61 70 68 20 74 77 69 63 |s the gr|aph twic|
|000006e0| 65 2e 13 0d 0a 00 0d 0b | 00 54 68 65 72 65 66 6f |e.......|.Therefo|
|000006f0| 72 65 2c 20 74 68 69 73 | 20 65 71 75 61 74 69 6f |re, this| equatio|
|00000700| 6e 20 64 6f 65 73 20 6e | 6f 74 20 72 65 70 72 65 |n does n|ot repre|
|00000710| 73 65 6e 74 20 11 33 79 | 20 11 31 61 73 20 61 20 |sent .3y| .1as a |
|00000720| 66 75 6e 63 74 69 6f 6e | 20 6f 66 20 11 33 78 11 |function| of .3x.|
|00000730| 31 2e 0d 0a 00 53 65 63 | 74 69 6f 6e 20 32 2e 33 |1....Sec|tion 2.3|
|00000740| 20 20 41 6e 61 6c 79 7a | 69 6e 67 20 47 72 61 70 | Analyz|ing Grap|
|00000750| 68 73 20 6f 66 20 46 75 | 6e 63 74 69 6f 6e 73 0d |hs of Fu|nctions.|
|00000760| 0b 00 44 65 74 65 72 6d | 69 6e 65 20 74 68 65 20 |..Determ|ine the |
|00000770| 69 6e 74 65 72 76 61 6c | 73 20 6f 76 65 72 20 77 |interval|s over w|
|00000780| 68 69 63 68 20 74 68 65 | 0d 0a 00 20 20 20 20 20 |hich the|... |
|00000790| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 34 | | .4|
|000007a0| 44 32 32 32 32 32 0d 0b | 00 11 31 66 75 6e 63 74 |D22222..|..1funct|
|000007b0| 69 6f 6e 20 11 33 66 11 | 31 28 11 33 78 11 31 29 |ion .3f.|1(.3x.1)|
|000007c0| 20 3d 20 2d 11 33 78 11 | 34 53 20 11 33 78 20 11 | = -.3x.|4S .3x .|
|000007d0| 31 2b 20 36 20 69 73 20 | 69 6e 63 72 65 61 73 69 |1+ 6 is |increasi|
|000007e0| 6e 67 2c 0d 0a 00 0d 0b | 00 64 65 63 72 65 61 73 |ng,.....|.decreas|
|000007f0| 69 6e 67 2c 20 6f 72 20 | 63 6f 6e 73 74 61 6e 74 |ing, or |constant|
|00000800| 2e 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00000810| 20 20 20 20 20 20 20 14 | 6b 33 2d 35 2d 33 2e 6d | .|k3-5-3.m|
|00000820| 14 34 38 14 30 14 34 30 | 14 38 14 0d 0a 00 0d 0a |.48.0.40|.8......|
|00000830| 00 13 12 31 53 4f 4c 55 | 54 49 4f 4e 12 30 0d 0a |...1SOLU|TION.0..|
|00000840| 00 0d 0a 00 0d 0a 00 46 | 72 6f 6d 20 74 68 65 20 |.......F|rom the |
|00000850| 67 72 61 70 68 20 6f 66 | 20 74 68 65 20 66 75 6e |graph of| the fun|
|00000860| 63 74 69 6f 6e 2c 20 77 | 65 20 73 65 65 20 74 68 |ction, w|e see th|
|00000870| 61 74 20 74 68 65 20 66 | 75 6e 63 74 69 6f 6e 20 |at the f|unction |
|00000880| 69 73 20 69 6e 63 72 65 | 61 73 69 6e 67 20 6f 6e |is incre|asing on|
|00000890| 20 74 68 65 0d 0a 00 0d | 0b 00 69 6e 74 65 72 76 | the....|..interv|
|000008a0| 61 6c 20 28 2d 36 2c 20 | 2d 34 29 20 61 6e 64 20 |al (-6, |-4) and |
|000008b0| 64 65 63 72 65 61 73 69 | 6e 67 20 6f 6e 20 74 68 |decreasi|ng on th|
|000008c0| 65 20 69 6e 74 65 72 76 | 61 6c 20 28 2d 34 2c 20 |e interv|al (-4, |
|000008d0| 11 34 38 11 31 29 2e 0d | 0a 00 53 65 63 74 69 6f |.48.1)..|..Sectio|
|000008e0| 6e 20 32 2e 33 20 20 41 | 6e 61 6c 79 7a 69 6e 67 |n 2.3 A|nalyzing|
|000008f0| 20 47 72 61 70 68 73 20 | 6f 66 20 46 75 6e 63 74 | Graphs |of Funct|
|00000900| 69 6f 6e 73 20 20 20 20 | 20 20 20 20 20 20 20 20 |ions | |
|00000910| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 34 | | .4|
|00000920| 5b 32 20 20 20 32 5d 0d | 0b 00 20 20 20 20 20 20 |[2 2].|.. |
|00000930| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000940| 20 20 20 20 21 21 20 11 | 33 78 20 11 34 21 21 0d | !! .|3x .4!!.|
|00000950| 0b 00 11 31 53 6b 65 74 | 63 68 20 74 68 65 20 67 |...1Sket|ch the g|
|00000960| 72 61 70 68 20 6f 66 20 | 11 33 66 11 31 28 11 33 |raph of |.3f.1(.3|
|00000970| 78 11 31 29 20 3d 11 34 | 21 21 20 32 20 21 21 20 |x.1) =.4|!! 2 !! |
|00000980| 11 31 61 6e 64 20 64 65 | 74 65 72 6d 69 6e 65 20 |.1and de|termine |
|00000990| 69 66 20 74 68 65 20 66 | 75 6e 63 74 69 6f 6e 20 |if the f|unction |
|000009a0| 69 73 20 65 76 65 6e 2c | 20 6f 64 64 2c 0d 0b 00 |is even,| odd,...|
|000009b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000009c0| 20 20 20 20 20 20 20 20 | 20 20 11 34 21 21 20 11 | | .4!! .|
|000009d0| 31 32 20 11 34 21 21 0d | 0b 00 20 20 20 20 20 20 |12 .4!!.|.. |
|000009e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000009f0| 20 20 20 20 6c 32 20 20 | 20 32 6a 0d 0a 00 11 31 | l2 | 2j....1|
|00000a00| 6f 72 20 6e 65 69 74 68 | 65 72 2e 0d 0a 00 0d 0b |or neith|er......|
|00000a10| 00 13 12 31 53 4f 4c 55 | 54 49 4f 4e 12 30 0d 0a |...1SOLU|TION.0..|
|00000a20| 00 48 65 72 65 20 77 65 | 20 68 61 76 65 20 61 20 |.Here we| have a |
|00000a30| 67 72 65 61 74 65 73 74 | 20 69 6e 74 65 67 65 72 |greatest| integer|
|00000a40| 20 66 75 6e 63 74 69 6f | 6e 20 77 68 69 63 68 20 | functio|n which |
|00000a50| 77 65 20 64 65 66 69 6e | 65 20 61 73 20 66 6f 6c |we defin|e as fol|
|00000a60| 6c 6f 77 73 2e 0d 0a 00 | 20 20 20 20 20 20 20 20 |lows....| |
|00000a70| 11 34 5b 32 20 20 20 32 | 5d 0d 0b 00 20 20 20 20 |.4[2 2|]... |
|00000a80| 20 20 20 20 21 21 20 11 | 33 78 20 11 34 21 21 0d | !! .|3x .4!!.|
|00000a90| 0b 00 20 20 20 20 20 20 | 20 20 21 21 20 32 20 21 |.. | !! 2 !|
|00000aa0| 21 20 11 31 3d 20 74 68 | 65 20 67 72 65 61 74 65 |! .1= th|e greate|
|00000ab0| 73 74 20 69 6e 74 65 67 | 65 72 20 6c 65 73 73 20 |st integ|er less |
|00000ac0| 74 68 61 6e 20 6f 72 20 | 65 71 75 61 6c 20 74 6f |than or |equal to|
|00000ad0| 20 11 33 78 11 31 2f 32 | 0d 0b 00 20 20 20 20 20 | .3x.1/2|... |
|00000ae0| 20 20 20 11 34 21 21 20 | 11 31 32 20 11 34 21 21 | .4!! |.12 .4!!|
|00000af0| 0d 0b 00 20 20 20 20 20 | 20 20 20 6c 32 20 20 20 |... | l2 |
|00000b00| 32 6a 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |2j | |
|00000b10| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000b20| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000b30| 20 20 20 11 31 13 0d 0a | 00 55 73 69 6e 67 20 74 | .1...|.Using t|
|00000b40| 68 69 73 20 64 65 66 69 | 6e 69 74 69 6f 6e 2c 20 |his defi|nition, |
|00000b50| 77 65 20 63 61 6c 63 75 | 6c 61 74 65 20 74 68 65 |we calcu|late the|
|00000b60| 20 66 6f 6c 6c 6f 77 69 | 6e 67 20 76 61 6c 75 65 | followi|ng value|
|00000b70| 73 20 6f 66 20 11 33 66 | 11 31 2e 0d 0a 00 0d 0b |s of .3f|.1......|
|00000b80| 00 57 68 65 6e 20 2d 36 | 20 11 34 3c 20 11 33 78 |.When -6| .4< .3x|
|00000b90| 20 11 31 3c 20 2d 34 2c | 20 20 20 20 11 33 66 11 | .1< -4,| .3f.|
|00000ba0| 31 28 11 33 78 11 31 29 | 20 3d 20 2d 33 13 0d 0a |1(.3x.1)| = -3...|
|00000bb0| 00 0d 0b 00 57 68 65 6e | 20 2d 34 20 11 34 3c 20 |....When| -4 .4< |
|00000bc0| 11 33 78 20 11 31 3c 20 | 2d 32 2c 20 20 20 20 11 |.3x .1< |-2, .|
|00000bd0| 33 66 11 31 28 11 33 78 | 11 31 29 20 3d 20 2d 32 |3f.1(.3x|.1) = -2|
|00000be0| 13 0d 0a 00 0d 0b 00 57 | 68 65 6e 20 2d 32 20 11 |.......W|hen -2 .|
|00000bf0| 34 3c 20 11 33 78 20 11 | 31 3c 20 30 2c 20 20 20 |4< .3x .|1< 0, |
|00000c00| 20 20 11 33 66 11 31 28 | 11 33 78 11 31 29 20 3d | .3f.1(|.3x.1) =|
|00000c10| 20 2d 31 13 0d 0a 00 0d | 0b 00 57 68 65 6e 20 30 | -1.....|..When 0|
|00000c20| 20 11 34 3c 20 11 33 78 | 20 11 31 3c 20 32 2c 20 | .4< .3x| .1< 2, |
|00000c30| 20 20 20 20 20 11 33 66 | 11 31 28 11 33 78 11 31 | .3f|.1(.3x.1|
|00000c40| 29 20 3d 20 30 13 0d 0a | 00 0d 0b 00 57 68 65 6e |) = 0...|....When|
|00000c50| 20 32 20 11 34 3c 20 11 | 33 78 20 11 31 3c 20 34 | 2 .4< .|3x .1< 4|
|00000c60| 2c 20 20 20 20 20 20 11 | 33 66 11 31 28 11 33 78 |, .|3f.1(.3x|
|00000c70| 11 31 29 20 3d 20 31 0d | 0a 00 0d 0b 00 57 68 65 |.1) = 1.|.....Whe|
|00000c80| 6e 20 34 20 11 34 3c 20 | 11 33 78 20 11 31 3c 20 |n 4 .4< |.3x .1< |
|00000c90| 36 2c 20 20 20 20 20 20 | 11 33 66 11 31 28 11 33 |6, |.3f.1(.3|
|00000ca0| 78 11 31 29 20 3d 20 32 | 13 0d 0a 00 0d 0b 00 55 |x.1) = 2|.......U|
|00000cb0| 73 69 6e 67 20 74 68 65 | 73 65 20 76 61 6c 75 65 |sing the|se value|
|00000cc0| 73 2c 20 77 65 20 6f 62 | 74 61 69 6e 20 74 68 65 |s, we ob|tain the|
|00000cd0| 20 67 72 61 70 68 20 73 | 68 6f 77 6e 20 62 65 6c | graph s|hown bel|
|00000ce0| 6f 77 2e 0d 0a 00 20 20 | 20 20 20 20 20 20 20 20 |ow.... | |
|00000cf0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 14 | | .|
|00000d00| 6b 33 2d 35 2d 38 2e 6d | 14 32 37 14 38 14 35 30 |k3-5-8.m|.27.8.50|
|00000d10| 14 38 14 0d 0a 00 0d 0a | 00 0d 0a 00 0d 0a 00 0d |.8......|........|
|00000d20| 0a 00 0d 0a 00 0d 0a 00 | 0d 0a 00 0d 0a 00 0d 0b |........|........|
|00000d30| 00 53 69 6e 63 65 20 74 | 68 69 73 20 67 72 61 70 |.Since t|his grap|
|00000d40| 68 20 69 73 20 6e 6f 74 | 20 73 79 6d 6d 65 74 72 |h is not| symmetr|
|00000d50| 69 63 20 77 69 74 68 20 | 72 65 73 70 65 63 74 20 |ic with |respect |
|00000d60| 74 6f 20 74 68 65 20 6f | 72 69 67 69 6e 2c 20 6f |to the o|rigin, o|
|00000d70| 72 20 77 69 74 68 20 72 | 65 73 70 65 63 74 0d 0a |r with r|espect..|
|00000d80| 00 74 6f 20 74 68 65 20 | 11 33 79 11 31 2d 61 78 |.to the |.3y.1-ax|
|00000d90| 69 73 2c 20 77 65 20 63 | 6f 6e 63 6c 75 64 65 20 |is, we c|onclude |
|00000da0| 74 68 61 74 20 69 74 20 | 69 73 20 6e 65 69 74 68 |that it |is neith|
|00000db0| 65 72 20 65 76 65 6e 20 | 6e 6f 72 20 6f 64 64 2e |er even |nor odd.|
|00000dc0| 0d 0a 00 53 65 63 74 69 | 6f 6e 20 32 2e 33 20 20 |...Secti|on 2.3 |
|00000dd0| 41 6e 61 6c 79 7a 69 6e | 67 20 47 72 61 70 68 73 |Analyzin|g Graphs|
|00000de0| 20 6f 66 20 46 75 6e 63 | 74 69 6f 6e 73 0d 0b 00 | of Func|tions...|
|00000df0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000e00| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000e10| 20 20 20 20 20 20 20 20 | 11 32 33 0d 0b 00 11 31 | |.23....1|
|00000e20| 44 65 74 65 72 6d 69 6e | 65 20 77 68 65 74 68 65 |Determin|e whethe|
|00000e30| 72 20 74 68 65 20 66 75 | 6e 63 74 69 6f 6e 20 11 |r the fu|nction .|
|00000e40| 33 66 11 31 28 11 33 78 | 11 31 29 20 3d 20 33 11 |3f.1(.3x|.1) = 3.|
|00000e50| 33 78 20 20 11 31 2d 20 | 35 11 33 78 20 11 31 69 |3x .1- |5.3x .1i|
|00000e60| 73 20 65 76 65 6e 2c 20 | 6f 64 64 2c 20 6f 72 20 |s even, |odd, or |
|00000e70| 6e 65 69 74 68 65 72 2e | 0d 0a 00 0d 0a 00 13 12 |neither.|........|
|00000e80| 31 53 4f 4c 55 54 49 4f | 4e 12 30 0d 0a 00 0d 0b |1SOLUTIO|N.0.....|
|00000e90| 00 54 6f 20 64 65 74 65 | 72 6d 69 6e 65 20 77 68 |.To dete|rmine wh|
|00000ea0| 65 74 68 65 72 20 74 68 | 65 20 66 75 6e 63 74 69 |ether th|e functi|
|00000eb0| 6f 6e 20 69 73 20 65 76 | 65 6e 20 6f 72 20 6f 64 |on is ev|en or od|
|00000ec0| 64 2c 20 77 65 20 72 65 | 70 6c 61 63 65 20 11 33 |d, we re|place .3|
|00000ed0| 78 20 11 31 62 79 20 2d | 11 33 78 20 11 31 61 6e |x .1by -|.3x .1an|
|00000ee0| 64 0d 0a 00 6f 62 74 61 | 69 6e 0d 0a 00 20 20 20 |d...obta|in... |
|00000ef0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000f00| 20 20 20 20 20 20 20 11 | 32 33 0d 0b 00 20 20 20 | .|23... |
|00000f10| 20 20 20 20 20 20 20 20 | 20 20 11 33 66 11 31 28 | | .3f.1(|
|00000f20| 2d 11 33 78 11 31 29 20 | 3d 20 33 28 2d 11 33 78 |-.3x.1) |= 3(-.3x|
|00000f30| 11 31 29 20 20 2d 20 35 | 28 2d 11 33 78 11 31 29 |.1) - 5|(-.3x.1)|
|00000f40| 13 0d 0a 00 20 20 20 20 | 20 20 20 20 20 20 20 20 |.... | |
|00000f50| 20 20 20 20 20 20 20 20 | 20 20 20 20 11 32 33 0d | | .23.|
|00000f60| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|00000f70| 20 20 20 20 20 11 31 3d | 20 2d 33 11 33 78 20 20 | .1=| -3.3x |
|00000f80| 11 31 2b 20 35 11 33 78 | 11 31 13 0d 0a 00 20 20 |.1+ 5.3x|.1.... |
|00000f90| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000fa0| 20 20 20 20 20 20 20 11 | 32 33 0d 0b 00 20 20 20 | .|23... |
|00000fb0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000fc0| 11 31 3d 20 2d 28 33 11 | 33 78 20 20 11 31 2d 20 |.1= -(3.|3x .1- |
|00000fd0| 35 11 33 78 11 31 29 13 | 0d 0a 00 0d 0b 00 20 20 |5.3x.1).|...... |
|00000fe0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000ff0| 20 3d 20 2d 11 33 66 11 | 31 28 11 33 78 11 31 29 | = -.3f.|1(.3x.1)|
|00001000| 13 0d 0a 00 0d 0b 00 42 | 65 63 61 75 73 65 20 74 |.......B|ecause t|
|00001010| 68 69 73 20 72 65 70 6c | 61 63 65 6d 65 6e 74 20 |his repl|acement |
|00001020| 70 72 6f 64 75 63 65 64 | 20 2d 11 33 66 11 31 28 |produced| -.3f.1(|
|00001030| 11 33 78 11 31 29 2c 20 | 77 65 20 63 6f 6e 63 6c |.3x.1), |we concl|
|00001040| 75 64 65 20 74 68 61 74 | 20 74 68 65 20 66 75 6e |ude that| the fun|
|00001050| 63 74 69 6f 6e 20 69 73 | 20 6f 64 64 2e 0d 0a 00 |ction is| odd....|
|00001060| 53 65 63 74 69 6f 6e 20 | 32 2e 33 20 20 41 6e 61 |Section |2.3 Ana|
|00001070| 6c 79 7a 69 6e 67 20 47 | 72 61 70 68 73 20 6f 66 |lyzing G|raphs of|
|00001080| 20 46 75 6e 63 74 69 6f | 6e 73 0d 0b 00 53 6b 65 | Functio|ns...Ske|
|00001090| 74 63 68 20 74 68 65 20 | 67 72 61 70 68 20 6f 66 |tch the |graph of|
|000010a0| 20 74 68 65 20 66 75 6e | 63 74 69 6f 6e 20 11 33 | the fun|ction .3|
|000010b0| 66 11 31 28 11 33 78 11 | 31 29 20 3d 20 2d 32 20 |f.1(.3x.|1) = -2 |
|000010c0| 61 6e 64 20 64 65 74 65 | 72 6d 69 6e 65 20 77 68 |and dete|rmine wh|
|000010d0| 65 74 68 65 72 20 74 68 | 65 20 66 75 6e 63 74 69 |ether th|e functi|
|000010e0| 6f 6e 0d 0a 00 69 73 20 | 65 76 65 6e 2c 20 6f 64 |on...is |even, od|
|000010f0| 64 2c 20 6f 72 20 6e 65 | 69 74 68 65 72 2e 0d 0a |d, or ne|ither...|
|00001100| 00 0d 0b 00 13 12 31 53 | 4f 4c 55 54 49 4f 4e 12 |......1S|OLUTION.|
|00001110| 30 0d 0a 00 0d 0b 00 53 | 69 6e 63 65 20 11 33 66 |0......S|ince .3f|
|00001120| 20 11 31 69 73 20 61 20 | 63 6f 6e 73 74 61 6e 74 | .1is a |constant|
|00001130| 20 66 75 6e 63 74 69 6f | 6e 2c 20 77 65 20 6b 6e | functio|n, we kn|
|00001140| 6f 77 0d 0a 00 74 68 61 | 74 20 69 74 73 20 67 72 |ow...tha|t its gr|
|00001150| 61 70 68 20 69 73 20 61 | 20 68 6f 72 69 7a 6f 6e |aph is a| horizon|
|00001160| 74 61 6c 20 6c 69 6e 65 | 20 61 73 0d 0a 00 73 68 |tal line| as...sh|
|00001170| 6f 77 6e 20 69 6e 20 74 | 68 65 20 66 69 67 75 72 |own in t|he figur|
|00001180| 65 20 61 74 20 74 68 65 | 20 72 69 67 68 74 2e 20 |e at the| right. |
|00001190| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 14 6b 33 | | .k3|
|000011a0| 2d 35 2d 35 2e 6d 14 34 | 39 14 31 30 14 34 30 14 |-5-5.m.4|9.10.40.|
|000011b0| 38 14 20 20 20 20 20 20 | 20 13 0d 0a 00 0d 0b 00 |8. | .......|
|000011c0| 53 69 6e 63 65 20 74 68 | 69 73 20 67 72 61 70 68 |Since th|is graph|
|000011d0| 20 69 73 20 73 79 6d 6d | 65 74 72 69 63 20 77 69 | is symm|etric wi|
|000011e0| 74 68 20 72 65 73 70 65 | 63 74 0d 0a 00 74 6f 20 |th respe|ct...to |
|000011f0| 74 68 65 20 11 33 79 11 | 31 2d 61 78 69 73 2c 20 |the .3y.|1-axis, |
|00001200| 77 65 20 63 6f 6e 63 6c | 75 64 65 20 74 68 61 74 |we concl|ude that|
|00001210| 20 74 68 65 20 66 75 6e | 63 74 69 6f 6e 0d 0a 00 | the fun|ction...|
|00001220| 69 73 20 65 76 65 6e 2e | 13 0d 0a 00 0d 0b 00 54 |is even.|.......T|
|00001230| 6f 20 76 65 72 69 66 79 | 20 74 68 69 73 20 72 65 |o verify| this re|
|00001240| 73 75 6c 74 2c 20 73 68 | 6f 77 20 74 68 61 74 20 |sult, sh|ow that |
|00001250| 11 33 66 11 31 28 2d 11 | 33 78 11 31 29 20 3d 20 |.3f.1(-.|3x.1) = |
|00001260| 11 33 66 11 31 28 11 33 | 78 11 31 29 2e 0d 0a 00 |.3f.1(.3|x.1)....|
|00001270| 53 65 63 74 69 6f 6e 20 | 32 2e 33 20 20 41 6e 61 |Section |2.3 Ana|
|00001280| 6c 79 7a 69 6e 67 20 47 | 72 61 70 68 73 20 6f 66 |lyzing G|raphs of|
|00001290| 20 46 75 6e 63 74 69 6f | 6e 73 0d 0b 00 20 20 20 | Functio|ns... |
|000012a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000012b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000012c0| 20 20 20 20 20 20 20 11 | 32 33 0d 0b 00 11 31 53 | .|23....1S|
|000012d0| 6b 65 74 63 68 20 74 68 | 65 20 67 72 61 70 68 20 |ketch th|e graph |
|000012e0| 6f 66 20 74 68 65 20 66 | 75 6e 63 74 69 6f 6e 20 |of the f|unction |
|000012f0| 11 33 66 11 31 28 11 33 | 78 11 31 29 20 3d 20 32 |.3f.1(.3|x.1) = 2|
|00001300| 11 33 78 20 20 11 31 61 | 6e 64 20 64 65 74 65 72 |.3x .1a|nd deter|
|00001310| 6d 69 6e 65 20 77 68 65 | 74 68 65 72 20 74 68 65 |mine whe|ther the|
|00001320| 20 66 75 6e 63 74 69 6f | 6e 0d 0a 00 69 73 20 65 | functio|n...is e|
|00001330| 76 65 6e 2c 20 6f 64 64 | 2c 20 6f 72 20 6e 65 69 |ven, odd|, or nei|
|00001340| 74 68 65 72 2e 0d 0a 00 | 0d 0b 00 13 12 31 53 4f |ther....|.....1SO|
|00001350| 4c 55 54 49 4f 4e 12 30 | 0d 0a 00 55 73 69 6e 67 |LUTION.0|...Using|
|00001360| 20 74 68 65 20 70 6f 69 | 6e 74 2d 70 6c 6f 74 74 | the poi|nt-plott|
|00001370| 69 6e 67 20 6d 65 74 68 | 6f 64 20 61 73 20 64 65 |ing meth|od as de|
|00001380| 73 63 72 69 62 65 64 0d | 0a 00 69 6e 20 53 65 63 |scribed.|..in Sec|
|00001390| 74 69 6f 6e 20 31 2e 31 | 20 6f 66 20 74 68 65 20 |tion 1.1| of the |
|000013a0| 74 65 78 74 2c 20 61 6e | 64 20 6f 75 72 20 6b 6e |text, an|d our kn|
|000013b0| 6f 77 6c 65 64 67 65 0d | 0a 00 6f 66 20 74 68 65 |owledge.|..of the|
|000013c0| 20 67 65 6e 65 72 61 6c | 20 73 68 61 70 65 20 6f | general| shape o|
|000013d0| 66 20 74 68 65 20 67 72 | 61 70 68 20 6f 66 20 61 |f the gr|aph of a|
|000013e0| 20 63 75 62 69 63 0d 0a | 00 66 75 6e 63 74 69 6f | cubic..|.functio|
|000013f0| 6e 2c 20 77 65 20 6f 62 | 74 61 69 6e 20 74 68 65 |n, we ob|tain the|
|00001400| 20 67 72 61 70 68 20 73 | 68 6f 77 6e 20 61 74 20 | graph s|hown at |
|00001410| 74 68 65 0d 0a 00 72 69 | 67 68 74 2e 20 20 20 20 |the...ri|ght. |
|00001420| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001430| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001440| 20 20 20 20 20 20 14 6b | 33 2d 35 2d 36 2e 6d 14 | .k|3-5-6.m.|
|00001450| 34 38 14 38 14 34 30 14 | 38 14 20 20 13 0d 0a 00 |48.8.40.|8. ....|
|00001460| 0d 0b 00 57 65 20 63 61 | 6e 20 73 65 65 20 66 72 |...We ca|n see fr|
|00001470| 6f 6d 20 6f 75 72 20 73 | 6b 65 74 63 68 20 74 68 |om our s|ketch th|
|00001480| 61 74 20 74 68 65 20 67 | 72 61 70 68 20 6f 66 0d |at the g|raph of.|
|00001490| 0a 00 74 68 69 73 20 66 | 75 6e 63 74 69 6f 6e 20 |..this f|unction |
|000014a0| 69 73 20 73 79 6d 6d 65 | 74 72 69 63 20 77 69 74 |is symme|tric wit|
|000014b0| 68 20 72 65 73 70 65 63 | 74 20 74 6f 0d 0a 00 74 |h respec|t to...t|
|000014c0| 68 65 20 6f 72 69 67 69 | 6e 2e 13 0d 0a 00 0d 0b |he origi|n.......|
|000014d0| 00 54 68 65 72 65 66 6f | 72 65 2c 20 77 65 20 63 |.Therefo|re, we c|
|000014e0| 6f 6e 63 6c 75 64 65 20 | 74 68 61 74 20 74 68 65 |onclude |that the|
|000014f0| 20 66 75 6e 63 74 69 6f | 6e 20 69 73 20 6f 64 64 | functio|n is odd|
|00001500| 2e 20 20 59 6f 75 20 63 | 61 6e 20 63 68 65 63 6b |. You c|an check|
|00001510| 20 74 68 69 73 20 72 65 | 73 75 6c 74 20 62 79 0d | this re|sult by.|
|00001520| 0a 00 73 68 6f 77 69 6e | 67 20 74 68 61 74 20 11 |..showin|g that .|
|00001530| 33 66 11 31 28 2d 11 33 | 78 11 31 29 20 3d 20 2d |3f.1(-.3|x.1) = -|
|00001540| 11 33 66 11 31 28 11 33 | 78 11 31 29 2e 0d 0a 00 |.3f.1(.3|x.1)....|
|00001550| 53 65 63 74 69 6f 6e 20 | 32 2e 33 20 20 41 6e 61 |Section |2.3 Ana|
|00001560| 6c 79 7a 69 6e 67 20 47 | 72 61 70 68 73 20 6f 66 |lyzing G|raphs of|
|00001570| 20 46 75 6e 63 74 69 6f | 6e 73 0d 0b 00 53 6b 65 | Functio|ns...Ske|
|00001580| 74 63 68 20 74 68 65 20 | 67 72 61 70 68 20 6f 66 |tch the |graph of|
|00001590| 20 74 68 65 20 66 75 6e | 63 74 69 6f 6e 20 61 6e | the fun|ction an|
|000015a0| 64 20 64 65 74 65 72 6d | 69 6e 65 20 77 68 65 74 |d determ|ine whet|
|000015b0| 68 65 72 20 74 68 65 20 | 66 75 6e 63 74 69 6f 6e |her the |function|
|000015c0| 20 69 73 20 65 76 65 6e | 2c 0d 0a 00 6f 64 64 2c | is even|,...odd,|
|000015d0| 20 6f 72 20 6e 65 69 74 | 68 65 72 2e 0d 0b 00 20 | or neit|her.... |
|000015e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000015f0| 20 20 20 20 20 20 20 20 | 20 20 11 34 28 0d 0b 00 | | .4(...|
|00001600| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001610| 20 20 20 20 20 20 20 20 | 20 20 20 21 20 11 31 32 | | ! .12|
|00001620| 20 2d 20 11 33 78 11 31 | 2c 20 20 20 11 33 78 20 | - .3x.1|, .3x |
|00001630| 11 34 3c 20 11 31 30 0d | 0b 00 20 20 20 20 20 20 |.4< .10.|.. |
|00001640| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001650| 20 20 20 20 20 11 34 21 | 0d 0b 00 20 20 20 20 20 | .4!|... |
|00001660| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|00001670| 33 66 11 31 28 11 33 78 | 11 31 29 20 3d 20 11 34 |3f.1(.3x|.1) = .4|
|00001680| 7b 20 11 31 32 2c 20 20 | 20 20 20 20 20 30 20 3c |{ .12, | 0 <|
|00001690| 20 11 33 78 20 11 34 3c | 20 11 31 33 0d 0b 00 20 | .3x .4<| .13... |
|000016a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000016b0| 20 20 20 20 20 20 20 20 | 20 20 11 34 21 0d 0b 00 | | .4!...|
|000016c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000016d0| 20 20 20 20 20 20 20 20 | 20 20 20 21 20 11 31 38 | | ! .18|
|000016e0| 20 2d 20 32 11 33 78 11 | 31 2c 20 20 11 33 78 20 | - 2.3x.|1, .3x |
|000016f0| 11 31 3e 20 33 0d 0b 00 | 20 20 20 20 20 20 20 20 |.1> 3...| |
|00001700| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001710| 20 20 20 11 34 39 0d 0a | 00 11 31 13 12 31 53 4f | .49..|..1..1SO|
|00001720| 4c 55 54 49 4f 4e 12 30 | 0d 0a 00 0d 0b 00 57 68 |LUTION.0|......Wh|
|00001730| 65 6e 20 11 33 78 20 11 | 34 3c 20 11 31 30 2c 20 |en .3x .|4< .10, |
|00001740| 74 68 65 20 66 75 6e 63 | 74 69 6f 6e 20 69 73 20 |the func|tion is |
|00001750| 64 65 66 69 6e 65 64 20 | 62 79 20 74 68 65 0d 0a |defined |by the..|
|00001760| 00 65 71 75 61 74 69 6f | 6e 20 32 20 2d 20 11 33 |.equatio|n 2 - .3|
|00001770| 78 11 31 2e 20 20 54 68 | 75 73 2c 20 77 65 20 6f |x.1. Th|us, we o|
|00001780| 62 74 61 69 6e 20 74 68 | 65 20 70 6f 72 74 69 6f |btain th|e portio|
|00001790| 6e 0d 0a 00 6f 66 20 74 | 68 65 20 67 72 61 70 68 |n...of t|he graph|
|000017a0| 20 73 68 6f 77 6e 20 61 | 74 20 74 68 65 20 72 69 | shown a|t the ri|
|000017b0| 67 68 74 2e 20 20 20 20 | 20 20 20 20 20 20 20 20 |ght. | |
|000017c0| 14 6b 33 2d 35 2d 37 61 | 2e 6d 14 34 38 14 31 36 |.k3-5-7a|.m.48.16|
|000017d0| 14 34 30 14 38 14 20 20 | 20 20 13 0d 0a 00 57 68 |.40.8. | ....Wh|
|000017e0| 65 6e 20 30 20 3c 20 11 | 33 78 20 11 34 3c 20 11 |en 0 < .|3x .4< .|
|000017f0| 31 33 2c 20 74 68 65 20 | 66 75 6e 63 74 69 6f 6e |13, the |function|
|00001800| 20 68 61 73 20 61 20 63 | 6f 6e 73 74 61 6e 74 0d | has a c|onstant.|
|00001810| 0a 00 76 61 6c 75 65 20 | 6f 66 20 32 2e 20 20 20 |..value |of 2. |
|00001820| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001830| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 14 6b | | .k|
|00001840| 33 2d 35 2d 37 62 2e 6d | 14 34 38 14 31 36 14 34 |3-5-7b.m|.48.16.4|
|00001850| 30 14 38 14 20 20 20 20 | 13 0d 0a 00 57 68 65 6e |0.8. |....When|
|00001860| 20 11 33 78 20 11 31 3e | 20 33 2c 20 74 68 65 20 | .3x .1>| 3, the |
|00001870| 66 75 6e 63 74 69 6f 6e | 20 69 73 20 64 65 66 69 |function| is defi|
|00001880| 6e 65 64 20 62 79 20 74 | 68 65 0d 0a 00 65 71 75 |ned by t|he...equ|
|00001890| 61 74 69 6f 6e 20 38 20 | 2d 20 32 11 33 78 20 11 |ation 8 |- 2.3x .|
|000018a0| 31 61 6e 64 20 77 65 20 | 63 6f 6d 70 6c 65 74 65 |1and we |complete|
|000018b0| 20 74 68 65 20 67 72 61 | 70 68 20 61 73 0d 0a 00 | the gra|ph as...|
|000018c0| 73 68 6f 77 6e 2e 20 20 | 20 20 20 20 20 20 20 20 |shown. | |
|000018d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000018e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 14 6b 33 2d | | .k3-|
|000018f0| 35 2d 37 63 2e 6d 14 34 | 38 14 31 36 14 34 30 14 |5-7c.m.4|8.16.40.|
|00001900| 38 14 20 20 20 20 13 0d | 0a 00 0d 0a 00 53 69 6e |8. ..|.....Sin|
|00001910| 63 65 20 74 68 69 73 20 | 67 72 61 70 68 20 69 73 |ce this |graph is|
|00001920| 20 6e 6f 74 20 73 79 6d | 6d 65 74 72 69 63 20 77 | not sym|metric w|
|00001930| 69 74 68 20 72 65 73 70 | 65 63 74 20 74 6f 20 74 |ith resp|ect to t|
|00001940| 68 65 20 6f 72 69 67 69 | 6e 2c 20 6f 72 20 77 69 |he origi|n, or wi|
|00001950| 74 68 20 72 65 73 70 65 | 63 74 0d 0a 00 74 6f 20 |th respe|ct...to |
|00001960| 74 68 65 20 11 33 79 11 | 31 2d 61 78 69 73 2c 20 |the .3y.|1-axis, |
|00001970| 77 65 20 63 6f 6e 63 6c | 75 64 65 20 74 68 61 74 |we concl|ude that|
|00001980| 20 69 74 20 69 73 20 6e | 65 69 74 68 65 72 20 65 | it is n|either e|
|00001990| 76 65 6e 20 6e 6f 72 20 | 6f 64 64 2e 0d 0a 00 53 |ven nor |odd....S|
|000019a0| 65 63 74 69 6f 6e 20 32 | 2e 33 20 20 41 6e 61 6c |ection 2|.3 Anal|
|000019b0| 79 7a 69 6e 67 20 47 72 | 61 70 68 73 20 6f 66 20 |yzing Gr|aphs of |
|000019c0| 46 75 6e 63 74 69 6f 6e | 73 0d 0b 00 20 20 20 20 |Function|s... |
|000019d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000019e0| 20 20 20 20 20 20 20 20 | 11 32 32 0d 0b 00 11 31 | |.22....1|
|000019f0| 53 6b 65 74 63 68 20 74 | 68 65 20 67 72 61 70 68 |Sketch t|he graph|
|00001a00| 20 6f 66 20 11 33 66 11 | 31 28 11 33 78 11 31 29 | of .3f.|1(.3x.1)|
|00001a10| 20 3d 20 11 33 78 20 20 | 11 31 2d 20 31 2c 20 61 | = .3x |.1- 1, a|
|00001a20| 6e 64 20 64 65 74 65 72 | 6d 69 6e 65 20 74 68 65 |nd deter|mine the|
|00001a30| 20 69 6e 74 65 72 76 61 | 6c 28 73 29 20 28 69 66 | interva|l(s) (if|
|00001a40| 20 61 6e 79 29 20 6f 6e | 0d 0a 00 74 68 65 20 72 | any) on|...the r|
|00001a50| 65 61 6c 20 61 78 69 73 | 20 74 68 61 74 20 11 33 |eal axis| that .3|
|00001a60| 66 11 31 28 11 33 78 11 | 31 29 20 11 34 3e 20 11 |f.1(.3x.|1) .4> .|
|00001a70| 31 30 2e 0d 0a 00 0d 0b | 00 13 12 31 53 4f 4c 55 |10......|...1SOLU|
|00001a80| 54 49 4f 4e 12 30 0d 0a | 00 0d 0b 00 55 73 69 6e |TION.0..|....Usin|
|00001a90| 67 20 74 68 65 20 74 65 | 63 68 6e 69 71 75 65 73 |g the te|chniques|
|00001aa0| 20 64 65 73 63 72 69 62 | 65 64 20 69 6e 20 53 65 | describ|ed in Se|
|00001ab0| 63 74 69 6f 6e 0d 0a 00 | 31 2e 31 20 6f 66 20 74 |ction...|1.1 of t|
|00001ac0| 68 65 20 74 65 78 74 2c | 20 61 6e 64 20 6f 75 72 |he text,| and our|
|00001ad0| 20 6b 6e 6f 77 6c 65 64 | 67 65 20 6f 66 20 74 68 | knowled|ge of th|
|00001ae0| 65 0d 0a 00 67 65 6e 65 | 72 61 6c 20 73 68 61 70 |e...gene|ral shap|
|00001af0| 65 20 6f 66 20 74 68 65 | 20 67 72 61 70 68 20 6f |e of the| graph o|
|00001b00| 66 20 61 20 73 71 75 61 | 72 69 6e 67 0d 0a 00 66 |f a squa|ring...f|
|00001b10| 75 6e 63 74 69 6f 6e 2c | 20 77 65 20 6f 62 74 61 |unction,| we obta|
|00001b20| 69 6e 20 74 68 65 20 67 | 72 61 70 68 20 73 68 6f |in the g|raph sho|
|00001b30| 77 6e 20 61 74 20 74 68 | 65 0d 0a 00 72 69 67 68 |wn at th|e...righ|
|00001b40| 74 2e 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |t. | |
|00001b50| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001b60| 20 20 20 20 20 20 20 20 | 20 14 6b 33 2d 35 2d 39 | | .k3-5-9|
|00001b70| 2e 6d 14 34 38 14 31 32 | 14 34 30 14 38 14 20 20 |.m.48.12|.40.8. |
|00001b80| 20 13 0d 0a 00 0d 0b 00 | 54 6f 20 64 65 74 65 72 | .......|To deter|
|00001b90| 6d 69 6e 65 20 77 68 65 | 72 65 20 74 68 65 20 66 |mine whe|re the f|
|00001ba0| 75 6e 63 74 69 6f 6e 20 | 69 73 20 0d 0a 00 20 20 |unction |is ... |
|00001bb0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001bc0| 20 20 11 32 32 0d 0b 00 | 11 31 6e 6f 6e 6e 65 67 | .22...|.1nonneg|
|00001bd0| 61 74 69 76 65 2c 20 73 | 6f 6c 76 65 20 11 33 78 |ative, s|olve .3x|
|00001be0| 20 20 11 31 2d 20 31 20 | 11 34 3e 20 11 31 30 2e | .1- 1 |.4> .10.|
|00001bf0| 20 13 0d 0a 00 0d 0a 00 | 0d 0b 00 44 6f 69 6e 67 | .......|...Doing|
|00001c00| 20 74 68 69 73 2c 20 77 | 65 20 6f 62 74 61 69 6e | this, w|e obtain|
|00001c10| 20 74 68 65 20 74 65 73 | 74 20 69 6e 74 65 72 76 | the tes|t interv|
|00001c20| 61 6c 73 20 28 2d 11 34 | 38 11 31 2c 20 2d 31 29 |als (-.4|8.1, -1)|
|00001c30| 2c 20 28 2d 31 2c 20 31 | 29 2c 20 61 6e 64 20 28 |, (-1, 1|), and (|
|00001c40| 31 2c 20 11 34 38 11 31 | 29 2e 20 20 13 0d 0a 00 |1, .48.1|). ....|
|00001c50| 0d 0b 00 54 65 73 74 69 | 6e 67 20 74 68 65 73 65 |...Testi|ng these|
|00001c60| 20 69 6e 74 65 72 76 61 | 6c 73 2c 20 77 65 20 66 | interva|ls, we f|
|00001c70| 69 6e 64 20 74 68 61 74 | 20 11 33 66 11 31 28 11 |ind that| .3f.1(.|
|00001c80| 33 78 11 31 29 20 11 34 | 3e 20 11 31 30 20 6f 6e |3x.1) .4|> .10 on|
|00001c90| 20 74 68 65 20 69 6e 74 | 65 72 76 61 6c 73 20 28 | the int|ervals (|
|00001ca0| 2d 11 34 38 11 31 2c 20 | 2d 31 5d 20 61 6e 64 20 |-.48.1, |-1] and |
|00001cb0| 0d 0a 00 5b 31 2c 20 11 | 34 38 11 31 29 2e 0d 0a |...[1, .|48.1)...|
|00001cc0| 00 3a 00 00 00 8a 02 00 | 00 4d 2a 00 00 10 00 00 |.:......|.M*.....|
|00001cd0| 00 00 00 00 00 65 32 2d | 33 00 ee 02 00 00 47 02 |.....e2-|3.....G.|
|00001ce0| 00 00 4d 2a 00 00 c4 02 | 00 00 00 00 00 00 65 32 |..M*....|......e2|
|00001cf0| 2d 33 2d 31 00 5f 05 00 | 00 d6 01 00 00 4d 2a 00 |-3-1._..|.....M*.|
|00001d00| 00 35 05 00 00 00 00 00 | 00 65 32 2d 33 2d 32 00 |.5......|.e2-3-2.|
|00001d10| 5f 07 00 00 7b 01 00 00 | 4d 2a 00 00 35 07 00 00 |_...{...|M*..5...|
|00001d20| 00 00 00 00 65 32 2d 33 | 2d 33 00 04 09 00 00 bf |....e2-3|-3......|
|00001d30| 04 00 00 4d 2a 00 00 da | 08 00 00 00 00 00 00 65 |...M*...|.......e|
|00001d40| 32 2d 33 2d 34 00 ed 0d | 00 00 73 02 00 00 4d 2a |2-3-4...|..s...M*|
|00001d50| 00 00 c3 0d 00 00 00 00 | 00 00 65 32 2d 33 2d 35 |........|..e2-3-5|
|00001d60| 00 8a 10 00 00 e6 01 00 | 00 4d 2a 00 00 60 10 00 |........|.M*..`..|
|00001d70| 00 00 00 00 00 69 32 2d | 33 2d 31 00 9a 12 00 00 |.....i2-|3-1.....|
|00001d80| b6 02 00 00 4d 2a 00 00 | 70 12 00 00 00 00 00 00 |....M*..|p.......|
|00001d90| 69 32 2d 33 2d 32 00 7a | 15 00 00 25 04 00 00 4d |i2-3-2.z|...%...M|
|00001da0| 2a 00 00 50 15 00 00 00 | 00 00 00 69 32 2d 33 2d |*..P....|...i2-3-|
|00001db0| 33 00 c9 19 00 00 f8 02 | 00 00 4d 2a 00 00 9f 19 |3.......|..M*....|
|00001dc0| 00 00 00 00 00 00 69 32 | 2d 33 2d 34 00 |......i2|-3-4. |
+--------+-------------------------+-------------------------+--------+--------+